• HOME
  • 연구
  • 연구성과

연구

연구성과

Seoin Back and Yousung Jung*

 

ACS Energy Lett. 2017, 2, 969-975

First published: 5 April 2017

DOI: 10.1021/acsenergylett.7b00152

 

Abstract

CO2 electrochemical catalysis is limited by scaling relations due to a d-band theory of transition metals. As a means of breaking the scaling relation, it has recently been reported that hybridizing the d-orbitals of transition metal with p-orbitals of main group elements or using naturally hybridized materials such as metal carbides and nitrides is a promising strategy. In this Letter, by means of density functional theory calculations, we investigate the catalytic properties of TiC, TiN, and single-atom catalysts supported on them for CO2 electrochemical reduction. In particular, we found that when single transition-metal atoms are inserted into the surface defect sites of TiC, denoted as M@d-TiC (M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh, or Ru), the iridium-doped TiC (Ir@d-TiC) is found to have a remarkably low overpotential of −0.09 V, the lowest value among any catalysts reported in the literature to selectively produce CH4 (−0.3 ∼ −1.0 V). It is also shown that possible surface protonation reactions on TiC as a side reaction can be ignored because the overpotential (−0.38 V) is significantly larger than that of the CO2 electrochemical reduction reaction on single-atom catalysts (e.g., −0.09 V). The origin of an extraordinary catalytic activity of Ir@d-TiC is also explained. This work clearly demonstrates the great potential of carbides and single-atom catalysts supported on TiC as active and selective CO2 reduction catalysts, and perhaps for other electrochemical applications as well.

 

2.jpg

 

?

  1. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting

    Date2017.08.11
    Read More
  2. Enhancement of Friction by Water Intercalated between Graphene and Mica

    Date2017.07.11
    Read More
  3. Photoresponsive Smart Coloration Electrochromic Supercapacitor

    Date2017.06.22
    Read More
  4. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions

    Date2017.05.24
    Read More
  5. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate

    Date2017.04.10
    Read More
  6. TiC- and TiN-Supported Single-Atom Catalysts for Dramatic Improvements in CO2 Electrochemical Reduction to CH4

    Date2017.04.05
    Read More
  7. Low Molecular Weight Spandex as a Promising Polymeric Binder for LiFePO4 Electrodes

    Date2017.01.02
    Read More
  8. Stabilized Octahedral Frameworks in Layered Double Hydroxides by Solid-Solution Mixing of Transition Metals

    Date2017.01.02
    Read More
  9. 5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries

    Date2017.01.02
    Read More
  10. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    Date2017.01.02
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 Next
/ 7